
CIS-53 – Lab Task 2 Sheet 1 of 7

Requirements:
R.1 Implement a program written in the Java language to instantiate and

examine objects of the PC component class(es) listed in the Problem
Statement (appended).

R.2 Include as a resource a database that contains these properties of the
PCComponent classes:

R.2.1 component name (explicit requirement)

R.2.2 component self cost (explicit requirement)

R.2.3 subsidiary component list (inferred requirement)

R.3 Implement a user interface through which the user can select a component
for examination (explicit req.) and view its properties (implicit).

R.3.1 To make the selection meaningful, there shall be more than one
component presented in the list (implicit) from which the user selects.

R.3.2 Information shall be presented to the user in a way that is well-formatted
(explicit req.), arranged to simplify visual recognition of which properties
belong to which component (implicit).

Analysis:
A.1 Resources:

Staff: one software engineer

Time: about one week, starting 30 September 2004. (Most of the
preceding week was wasted trying to find consensus with other
team members.) NOTE: By 30 September the database tables had
already been defined and implemented in MySQL.

Tools: MySQL, type 4 JDBC driver. NetBeans IDE.

A.2 Work Priorities:

A.2.1 Design and debug a PCComponent class to model the components listed
in the Problem Statement. Because the components learn their properties
from the database (Requirement 2), the database must be ready before
PCComponent testing can begin.

A.2.1.1 Design the database first and activate it. This requires that database
engine MySQL be installed, JDBC driver for MySQL be present in
JDBCHOME, operating system variables JAVA_HOME and
JDBCHOME be defined.

A.2.1.2 Design the PCComponent class.

CIS-53 – Lab Task 2 Sheet 2 of 7

A.2.1.3 Code a unit test driver for the PCComponent class.

A.2.2 Implement a style of user interface that satisfies the requirements with the
least amount of design and debug time.

A.2.3 Collect and polish the (paperless) paperwork.

Design:
D.1 Database design:

D.1.1 For each type of PC component enumerated in the Problem Statement
there shall be a component table.

D.1.2 Each row of a component table shall describe a particular instance of that
table’s component type.

D.1.3 The columns of a component table shall include

D.1.3.1 A unique identifier per row (prikey)

D.1.3.2 A component instance name (name)

D.1.3.3 A component instance cost (owncost)

D.1.4 If the kind of component a component table describes includes
subcomponents, there shall be columns in the table that name each type of
subcomponent. The column name shall

D.1.5 There shall be one component naming table that associates the names of
component tables with descriptive names for the kinds of components they
define. For example, the descriptive name could be “External Speakers”
for the component table speakers.

D.2 Component Class design

Deviation from the Problem Statement: Literal adherence to the problem
statement would require creation of seventeen distinct classes. This solution shall
define one base class (PCComponent) that when instantiated becomes, depending
on the parameters passed to its constructor, an object that models any one of the
component types enumerated in the Problem Statement.

D.2.1 A PCComponent instance shall have a cost() method that returns the cost
of the instance (explicit, from the Problem Statement).

D.2.1.1 Because a PCComponent may include subcomponents, there must be a
way for an instance’s cost() method to return the sum of its own cost
and the costs of its subcomponents.

D.2.1.2 So that an instance can readily find its subcomponents, instantiation of
a class shall instantiate all its subcomponents. The class’ properties
shall include references to all the subcomponents.

CIS-53 – Lab Task 2 Sheet 3 of 7

D.2.2 A component’s toString() method shall return a ‘a nicely formatted string
containing a recursive listing of the components making up a component.’
(from the Problem Statement)

D.2.2.1 The toString()s from subcomponents shall be appended to the toString()
of the parent component. Each subcomponent’s toString() shall be
appended on a new line, indented by from the start of the parent
component’s description string by one tab (‘\t’) .

Example:

parent_type instance_name own_cost

<tab>child_type instance_name own_cost

<tab>child_type instance_name own_cost

<tab><tab>grandchild_type instance_name own_cost

D.3 User Interface class design

D.3.1 The user interface class(es) shall implement a text mode (console) UI,
because that is the only kind that I can hope to complete in the time
allowed. (A.2.2)

D.3.2 The UI shall be organized as screen pages.

D.3.2.1 The page presented to the user at program start shall show a list of
components by name and number. By selecting a number, the user may
invoke a detail page (D.3.2.2) that shall show the properties of the
selected component and all its subcomponents.

The program start page shall also provide a way for the user to
terminate the program.

PCComponent
-componentName:String
-componentType:String
–partsBin:Vector
–tableName:String
–tableKey:String
–ownCost:double
–aggregateCost:double
–partsDescription:String
+PCComponent(String, String, Connection)
+toString():String
+getName():String
+getOwnCost():double
+getCost():double
+hasSubComponents():boolean
+getSubComponents():Vector
-quoteForSQL(String):String

Component
Properties
Database

CIS-53 – Lab Task 2 Sheet 4 of 7

D.3.2.2 The detail page shall show the properties of the selected component by
printing the selected component’s toString().

After printing the toString(), the detail page shall wait for a keypress
from the user before returning to the component list page (D.3.2.1)

(Classes derived from interface design specification)

Coding:
Design and code the classes in this order:

FiatData.java Populates the ‘task2’ database. It assumes ‘task2’ has been
created and is known to the SQL engine.

PCComponent.java Implements the generic component class.

The constructor gets the name of a database table, the key
for a row in that table, and a Connection to the database.
The constructor then builds the instance per the data
retrieved from the database, calling subcomponent
constructors recursively if needed.

PCComponentTest.java A bare-bones driver for verifying PCComponent
functionality.

ConsoleFormatter.java A helper class that massages the raw toString() output from
PCComponent, changing the tabbing size and lining up the
cost() numbers at the right screen margin.

PcSystemViewer.java The console-mode UI.

See the javadoc folder for more information on using these classes.

PcSystemViewer
-systems:Vector
–cf:ConsoleFormatter
-waitForKey():int
+getSystems(Connection):boolean
+showSystem(int, Connection)
+topMenu(Connection)
+PcSystemViewer()
+main(String [])

ConsoleFormatter
-allSpaces:String
–tabWidth:int
–costTabPos:int
+expandTabbedString(String):String
+setTabWidth(int)
+setCostTabPos(int)

CIS-53 – Lab Task 2 Sheet 5 of 7

Testing:
Unit test for PCComponent class
Start the database.

In the IDE, load PCComponentTest.java into the editor. Uncomment line 32, and
comment out lines 33 and 34. Run the program. The IDE’s Output Window should show

Got data for Processor: PIII 866 Coppermine39.95
 system cost = $39.95

This verifies correct construction of a PCComponent instance of the simplest form, one
with no subcomponents. It also verifies the simplest case operations of the toString() and
getCost() methods.

Comment out line 32, and uncomment line 33. Run the program. The IDE’s Output
Window should show

Got data for System main board: Business MB136.99
 Processor: Athlon XP 240074.99
 On-board Memory: 1 GB199.99
 Video card: Radeon 128MB49.99
 Sound Card: SoundBlaster Audigy 269.99
 LAN card: DLink 10/1004.99
 system cost = $536.94

This verifies correct construction of a PCComponent instance with one layer of
subcomponents. It also verifies correct recursive construction of the data used by the
toString() and getCost() methods.

Comment out line 33, and uncomment line 34. Run the program. The IDE’s Output
Window should show

Got data for PC System: Moby system24.99
 System enclosure: Gamer showoff case144.99
 Power Supply: Gamer 600W79.99
 System main board: Power User MB136.99
 Processor: Athlon XP 240074.99
 On-board Memory: 2 GB349.99
 Video card: RenderMonster 384MB1859.99
 Sound Card: SoundBlaster Audigy 269.99
 LAN card: Trendware 10/100/100029.99
 Floppy Drive: Mitsumi All-Media34.99
 Hard Disk: Maxtor 160 GB104.99
 Optical Drive: Pioneer DVD RW85.99
 Keyboard: Avant Prime148.99
 Pointing Device: optical scrollmouse9.99
 Monitor: Sony 19-inch LCD599.99
 Printer: Epson Stylus Photo R800349.99
 External Speakers: Klipsch Promedia Ultra 5.1349.99
 system cost = $4456.83

This verifies correct construction of a top level PCComponent instance. It also verifies
the greatest extent of recursive data construction for the toString() and getCost() methods.

CIS-53 – Lab Task 2 Sheet 6 of 7

Use Cases for the User Interface
(modified from a preliminary version by David Hostettler)

Use Case ID: UC1 Use Case Name: PC System Selection
Primary Actor(s): The primary actor for this use case is the user of this deliverable.

Description: A list of available PC systems will be displayed to the user. The user will then
select a PC system to be viewed.

Preconditions: The database must be available and populated with all required component and
PC system information.
The user must invoke the java executable to start this process.

Postconditions: A list of available PC systems will be displayed.

Use Case ID: UC2 Use Case Name: PC System Detail Display
Primary Actor(s): The primary actor for this use case is the user of this deliverable.

Description: The user will select a system to view from a displayed list of PC systems. The
selected PC system will then be displayed with all its components. A cost will be
displayed next to each component. The total system cost will be displayed at the
end of the component list.

Preconditions: Successful execution of.UC1
The user must have selected a PC system from the displayed list.

Postconditions: The PC system and all its components will be displayed with the cost of each
component, and the sum of all costs.

Use Case ID: UC3 Use Case Name: Return to PC System Selection
Primary Actor(s): The primary actor for this use case is the user of this deliverable.

Description: To be able to choose another PC System for detail display, the user shall select an
option that returns to the PC System Selection page.

Preconditions: The PC System Detail Display page shall be shown.
Postconditions: The PC System Selection page shall be shown.

Use Case ID: UC4 Use Case Name: Exit to Operating System
Primary Actor(s): The primary actor for this use case is the user of this deliverable.

Description: From a list of options, the user will choose to quit the program. The program shall
inform the user that it is terminating, then exit to the operating system.

Preconditions: The program shall display the PC System Selection page (see UC1).
Postconditions: The database shall continue normal operation.

CIS-53 – Lab Task 2 Sheet 7 of 7

Integration / System Test
Start the database.

In the IDE, load PcSystemViewer.java into the editor.

Run the program. Execution should be as shown in ProgramRun.doc.

(I know – this is more properly called a regression test, since I’m comparing current
operation to a previous successful example, rather than doing comparison to a set of
specifications. At least it’s a test.)

The Task 2 Problem Statement:

Create classes for the following types of PC components:

PCSystem
Case

Power Supply
Motherboard

CPU
Memory
Video Card
Sound Card
Ethernet Card

Floppy Drive
Hard Drive
CD Drive

Keyboard
Mouse
Monitor
Printer
Speaker

Each class should be composed of the components shown indented directly below it. Each class
instance should have a data member with the name of the instance. For example, an instance of
printer might have a name of "Epson Stylus 600" while another instance might have a name of
"HP Deskjet 540." Also, each class should contain a member function, cost(), which returns the
cost in dollars of the instance. In addition, each class should include a member function, toString
(), which returns a nicely formatted string containing a recursive listing of the components
making up a component.

Create database tables with your favorite relational database for the above component. Store
some data in each table. Provide an interface to select data and display in a well formatted report.
You may use Swing's JTable to store the data.

