
Library Manager <> Design and Execution Notes CIS-35B
T. Fox, T. Nguyen, T. Pham
Overview
The Library Manager (LM) System shall consist of one or more data terminals accessing a com-
mon database.

A terminal for LM shall be an application written in Java executing on a personal computer. At
this time the preferred PC platform is any desktop or laptop running Windows2000 or XP, with
at least 500 Megs of RAM. The PC shall have jre 1.4.x installed.

The preferred database is presently MySQL, version 4.0 or higher. It may be installed in one of
the PCs that hosts the LM terminal application, or in a separate dedicated host to which LM data
terminals can connect via TCP/IP.

The “Library Elf” represents whatever functionality LM may need that is not defined for or im-
plemented in the terminal applications. It may be a daemon program or ‘phantom’ terminal run-
ning when all the other terminals are shut down, doing database cleanup. TBD.

The overall functionality of the LM data terminal is to conduct transactions for users with the
database. Internally, the functionality divides into three categories:

 The GUI: The classes that present to a user via graphic screens the kinds of transactions that
are available. Examples: the login screen, the catalog search screen, etc.

 The transactions: The classes that model the way a user and the database interact to perform
a transaction. Examples: check out a book, check in a book, create a new user account, etc.

 The data modelers: The classes that represent records in the tables of the database.

Library Manager <> Design and Execution Notes CIS-35B
T. Fox, T. Nguyen, T. Pham
The database tables

users
Users include patrons, librarians, and administrators. The first character of the user_id field in-
dicates whether the user is a patron (‘P’), librarian (‘L’), or administrator (‘A’)1. The record
structure of the users table is:
user_id CHAR(10) NOT NULL
password VARCHAR(12) NOT NULL UNIQUE
date_added DATE NOT NULL
date_retired DATE
contact_id INTEGER
PRIMARY KEY(user_id)
The contact_id field identifies a record in the contactinfo table (below).

branches
Branches are separate locations where the public can have access to library resources. Books are
shelved at branches. Each branch has its own record in the database so that the library system can
have a way of identifying the location of books that are not checked out. The record structure of
the branches table is:
branch_id CHAR(10) NOT NULL
policy_id CHAR(3) NOT NULL
date_added DATE NOT NULL
date_retired DATE
contact_id INTEGER
PRIMARY KEY (branch_id)

contactinfo
‘Contact info’ are the data items that name and locate a branch, or the residence of a user. The
record structure of the contactinfo table is:
contact_id INTEGER NOT NULL
last_name VARCHAR(15)
first_name VARCHAR(15)
m_i CHAR(1)
street_address VARCHAR(20)
city VARCHAR(15)
state CHAR(2)
zip VARCHAR(10)
phone VARCHAR(15)
email VARCHAR(20)
PRIMARY KEY (contact_id)

1 Letting the categories of user IDs be recognizable by eye was a choice made while prototyping
the database design using a CSV (Comma Separated Values) database, before we got MySQL running
properly. CSV tables are all ASCII text, so having the various kinds of key fields be easily classified by
the first character of the field was intended to make it easier to verify correct key composition when
manually editing the CSV tables.

Library Manager <> Design and Execution Notes CIS-35B
T. Fox, T. Nguyen, T. Pham

catalog
The catalog table is a list of book descriptions. Its record structure is:
catalog_id CHAR(10) NOT NULL
title VARCHAR(15) NOT NULL
author VARCHAR(15) NOT NULL
publisher VARCHAR(15) NOT NULL
pub_year VARCHAR(4)
isbn VARCHAR(10)
other_key VARCHAR(8)
keywords VARCHAR(10)
PRIMARY KEY (catalog_id)

inventory
An inventory item is a specific copy of a book that is described in the catalog table. The
record structure of the inventory table is:
item_id CHAR(10) NOT NULL
catalog_id CHAR(10) NOT NULL
cost VARCHAR(6)
date_added DATE NOT NULL
date_removed DATE
why_removed VARCHAR(10)
PRIMARY KEY (item_id)

invloc
The invloc (inventory location) table is a list of the current locations of the library’s inventory
items (books). For any inventory item there shall be no more than one active (is_current ==
true) invloc record.

The record structure for invloc is:
move_id VARCHAR(10) NOT NULL
item_id CHAR(10) NOT NULL
id_from CHAR(10) NOT NULL
id_to CHAR(10) NOT NULL
trans_date DATE NOT NULL
due_date DATE
operator_id CHAR(10) NOT NULL
memo_id CHAR(10)
is_current CHAR(1) NOT NULL
PRIMARY KEY (move_id)
The purpose of the operator_id field is to record the user_id of the librarian or administrator
logged in at the terminal where the transaction takes place. The memo_id field may hold a for-
eign key that identifies a memo. The intended purpose of the memo is to record notes of wear or
damage noticed at check-in.

Library Manager <> Design and Execution Notes CIS-35B
T. Fox, T. Nguyen, T. Pham
Only items in active records may be eligible for transactions (below). The fields id_from and
id_to can be user_ids, branch_ids, or hold_ids according to the following rules:

from to transaction classification
branch branch OK (is ‘inter-branch transfer’) NOTE: When a book is added to inven-

tory, its first invloc record will have the branch_id where the book
enters the library system recorded as id_from and id_to.

branch user OK (is ‘check-out’)
user branch OK (is ‘check-in’)
user user irrelevant. This is not a transaction available at a library terminal, and

so would not be recorded in the database. As far as the library system is
concerned, a book turned in will be recorded in the database as checked
in by the user who checked it out.

branch hold place book on hold. A hold request acts like a proxy checkout for the
user who placed the hold request.

hold branch release book from hold. A book on hold shall be released from hold
when the hold request expires, or when the user who placed the hold re-
quest comes to the branch where the book is held before the hold ex-
pires and asks a librarian to release that book.

hold user NEVER. A user picking up a book from hold gets it from the branch.
user hold NEVER
hold hold NEVER

invhist
The invhist (inventory history) table is the archive of all the previous locations of the library’s
inventory items. The record structure is identical to that of invloc. Records are added to invhist
by copying obsolete records (is_current == false) from invloc. Obsolete records may be
purged from invloc after verifying that they have been copied to invhist.

onhold
The onhold table contains records of all unexpired hold requests. The record structure for the
onhold table is:
hold_id CHAR(10) NOT NULL
catalog_id CHAR(10) NOT NULL
item_id CHAR(10)
user_id CHAR(10) NOT NULL
branch_id CHAR(10)
date_requested DATE NOT NULL
expires_on DATE NOT NULL
is_current CHAR(1) NOT NULL
PRIMARY KEY (hold_id)

Library Manager <> Design and Execution Notes CIS-35B
T. Fox, T. Nguyen, T. Pham
The GUI classes
These classes generate the screens that user sees, direct input from the terminal user to appropri-
ate transaction objects, and display the transaction results.

welcome

catalog search
This dialog lets the user look for books based on Title, Author, Publisher, or Genre, or any com-
bination of the four. See FindABook.java. This dialog uses two transaction support classes, Cat-
alogSearch and InventoryStatus. When the user highlights items of interest and presses [FIND
SELECTED BOOKS], the list will rewrite itself to show books that are available for check-out in
the library system, and the library branches where they’re shelved.

Library Manager <> Design and Execution Notes CIS-35B
T. Fox, T. Nguyen, T. Pham

user login
The user enters the Account Number (UserID), the password, then presses [LOGIN]. The UserID
object will accept the abbreviated form (one letter and the significant digits) of Account Number.

patron services menu

user: change password (PIN)

Library Manager <> Design and Execution Notes CIS-35B
T. Fox, T. Nguyen, T. Pham

user: view/update contact info
Depending on the parameters passed to it, this dialog can create, edit or show (as read-only) the
data in a record from the contactinfo table. See ContactInfoEditor.java.

user: view checkouts/request renewal

user: view fines assessed

user: request item hold

librarian services menu

librarian: patron account / contact info maintenance (add new / update / re-
move)
The dialog is in two parts. The first provides a way to select the kind of user account to be creat-
ed, and two password fields for entering and confirming the user password.

Library Manager <> Design and Execution Notes CIS-35B
T. Fox, T. Nguyen, T. Pham

The second part of user account maintenance, the dialog for creating / editing contact informa-
tion, uses the same dialog as shown in user: view/update contact info. A Patron can only invoke
the dialog on his/her own information. A Librarian can invoke it on any Patron, and on the Li-
brarian’s own info.

librarian: check out

librarian: check in

librarian: view / update / cancel hold requests

librarian: collect fees

librarian: catalog maintenance (add new / update)
Depending on the parameters passed to it, this dialog can create, edit or show (as read-only) the
data in a record from the catalog table. The example below was invoked on an existing catalog
item. See CatalogItemEditor.java.

Library Manager <> Design and Execution Notes CIS-35B
T. Fox, T. Nguyen, T. Pham

librarian: inventory maintenance (add new / update / remove)
This dialog lets a Librarian add a book to inventory. Usage: Enter a catalog ID (short form is
OK) and press [Enter Catalog ID]. If that ID exists in the catalog, its description will be shown in
the info window. If the description matches the book to be added, press [Add to Inventory], else
press [RESET]. When all books have been added, press [DONE] to exit the dialog.

In the example below, the user entered “c1” and pressed [Enter Catalog ID]. The dialog found
the record, rewrote its ID in expanded form, and displayed the catalog description. The informa-
tion window is in a jScrollPane to allow long information strings to be displayed at a comfort-
ably large font size.

Library Manager <> Design and Execution Notes CIS-35B
T. Fox, T. Nguyen, T. Pham

administrator services menu

administrator: librarian account maintenance (add / update / remove)

administrator: administrator account maintenance (add / update / remove)

administrator: branches maintenance (add / update / remove)

The transaction classes
If LM were to actually be deployed for a municipal library system, these transaction classes
would be implemented as session EJBs. For our CIS-35B lab system, though, these are simply
classes that exist in the data terminal application.

For a business version of LM, all transaction classes would include a method to log execution of
a transaction to a journal file.

Create a new user, issue library card
To establish a new user account,

1. instantiate a User(userType) object, passing as userType ‘A’ for Administrator, ‘L’ for Li-
brarian, or ‘P’ for Patron.

2. Use the setPassword() method to set the value of the User instance’s password property This
method shall not change the database.

3. Call the update() method to add the new User to the database. If update() succeeds, it shall
set the values of the contactID and dateAdded properties.

Change user password
To access an existing user account,

instantiate a User(userID) object, passing as userID the user’s account ID. The structure of a
userID string shall be a single capital letter [‘A’, ‘L’,’P’] followed by decimal digits. If that ID
exists in the User database, the User instance’s properties shall be set to the values fetched from
the database. If such an ID is not found in the User database, the constructor shall fail.

Remove a user

Create a new branch and new empty contact info

Create a catalog item / Edit a catalog item
Does not exist as a distinct class; incorporated in the CatalogItemEditor dialog.

Library Manager <> Design and Execution Notes CIS-35B
T. Fox, T. Nguyen, T. Pham
Search the catalog
See CatalogSearch.java, InventoryStatus.java.

 (Retire an inventory item – not for this version of LM)

Check out

Check in

Show checked out items for user

Show accrued fines for user

Place a hold request
A user places a hold request by catalog_id. The transaction that creates the onhold record fills
in the hold_id, user_id, catalog_id, set date_requested to the current date, sets the expi-
ration_date to current date + 30 days, and sets is_current to T (or ‘1’ ?).

Scan to detect inactive records (invloc, onhold)
Daily, nominally at midnight, a process shall scan through the onhold table to find records
where (expires_on < today). It shall set those records’ is_current field to ‘F’ (or ‘0’?).
When all records have been scanned, it shall copy the active records to a temp table, drop the old
onhold table, and (re)create the onhold table from the temp table.

Similarly, the invloc table shall be scanned. The scan process shall ensure that invhist has a
copy of every inactive record in invloc. The process shall then copy the active records from in-
vloc to a temp table, drop the old invloc table, and (re)create the invloc table from the temp ta-
ble.

Scan to fulfill hold requests
This transaction shall take place periodically, on a schedule defined by library policy. While this
process runs, the system may need to lock some database tables. This may disable some data ter-
minal functionality while the scan process runs.

When scheduled, this process shall scan through the onhold table, sorting by catalog_id and
date_requested. For each catalog_id, it shall search the invloc table for records that (1) are
current, (2) have in_to == a branch_id, (3) catalog_id matches the onhold record. The
process shall note the item_ids from the invloc records and use them to fill hold requests, old-
est request first. For each item_id that satisfies a hold request, the process shall set the (previ-
ously empty) item_id of the onhold record, set the expires_on date to one week from today,
and set the branch_id to the branch where the item was found. The process shall then set the ex-
isting invloc record of item_id to (is_current == false), and create a new invloc record to
check out item_id from branch_id to hold_id. The process shall then send notification to the
user who placed the request.

Library Manager <> Design and Execution Notes CIS-35B
T. Fox, T. Nguyen, T. Pham
The data modeler classes
Each of these classes represents a record in a database table.

If LM were to actually be deployed for a municipal library system, these data modeler classes
would be implemented as entity EJBs.

Because data modeler classes depend on connection to the database, these classes shall throw
SQLException.

Because data modeler classes include methods that may fail when trying to match input args with
field data, these classes shall throw IllegalArgumentException.

(But because all we’re really concerned about is whether or not the constructors and class meth-
ods succeed, many of them just throw the generic Exception.)

Each data modeler class shall have

 a private property that shall indicate whether the record is being created for the first time, or
is from an existing record in the table. Class methods may use this property to determine
whether or not to modify the value of a field. (Example: Once the record has been written for
the first time, it is never permissible to change the value of the record’s primary key.)

 private properties for all the record’s fields

 a constructor for provisionally creating a new record. This constructor shall set the value of
the object’s key field property, and of other properties which shall be passed to the construc-
tor as parameters. The constructor shall not write to the table.

 a method to commit a record update that shall succeed only if data are defined for the
record’s NOT NULL fields.

 a constructor for retrieving a record that matches a primary key. This constructor shall fill the
object’s properties with the values read from the record whose primary key matches the con-
structor’s input parameter.

 public getters for all an object’s field properties. These getters shall not read the database.
The only method that shall read the database is the constructor that finds a record for a
matching primary key.

 public setters for all the field properties that are permissible to set. (The properties that may
only be set when creating the record shall be passed as arguments to the constructor for new
records.)

Library Manager <> Design and Execution Notes CIS-35B
T. Fox, T. Nguyen, T. Pham

User
This class models a record of the users table. See the Javadoc for User.

Branch
This class models a record of the branches table. See the Javadoc for Branch.

ContactInfo
This class models a record of the contactinfo table. See the Javadoc for ContactInfo.

CatalogItem
This class models a record of the catalog table. See the Javadoc for CatalogItem.

InventoryItem
This class models a record of the inventory table. See the Javadoc for InventoryItem.

MoveItem
This class models a record that is used in the invloc and invhist tables. See the Javadoc for
MoveItem.

HoldItem
This class models a record of the onhold table. See the Javadoc for HoldItem.

data modeler support classes
To guarantee that the primary keys (xxxx_id fields) for database records will be unique, there
shall be a database mechanism that holds the value of the last numeric primary key issued.
Whenever a new record is created, the numeric part of the new record’s primary key shall be gen-
erated by an atomic operation that increments the ‘last_value’ in the database. The incremented
value shall be the numeric part of the new primary key.

AgentID
This class shall implement the atomic operation that increments ‘last_value’ and returns the
unique numeric value for other primary key classes to use.

The AgentID() constructor instantiates an object with a unique idNumber.

The AgentID(knownID) constructor instantiates an object that has idNumber set to the value of
knownID. The purpose of constructing an object this way is to support xxxxID subclasses when
an xxxxID object is used to match an existing record’s primary key.

The toString() method shall return a ‘0’ padded (n?) character string of the value of idNumber

Library Manager <> Design and Execution Notes CIS-35B
T. Fox, T. Nguyen, T. Pham

AgentID
-idNumber:integer
+AgentID()
+AgentID(knownID:integer)
+ toString(): String
throws SQLException, IllegalArgumentException

UserID
-accessType:char
+UserID(userType:char)
+UserID(knownID:String)
+toString(): String
throws SQLException, IllegalArgumentException

The description below for the subclass UserID is typical of all descendants of AgentID. See the
javadocs for AgentID and its subclasses.

UserID extends AgentID
Calling the constructor UserID(userType:char)

 if UserType is not one of [‘A’,’L’,’P’], throws IllegalArgumentException. If good arg, saves
it in accessType.

 calls super().This operation may throw SQLException.

Calling the constructor UserID(knownID:String)

 if the first character of string knownID is not one of [‘A’,’L’,’P’], throws IllegalArgu-
mentException. If good arg, saves it in accessType.

 if the remaining characters in knownID do not parse as an integer (try …
catch NumberFormatException), throws IllegalArgumentException. If success, calls super
(knownID) with the good integer.

 sends query “SELECT * FROM users WHERE (user_id = “ + knownID + “)” . This opera-
tion may throw SQLException. If the result set contains anything other than one row, throw
IllegalArgumentException. (If there are multiple rows, the database is corrupt. How to han-
dle this?)

toString() shall return a string consisting of the accessType char and super.toString().

(other xxxxID classes)

Library Manager <> Document History CIS-35B
T. Fox, T. Nguyen, T. Pham

Date Item Action
22 July 2004 Detailed class descriptions and UML were

cluttering up the document. Some methods
in the data modeler classes really belonged
in the transaction classes.

Document name changed to
LMDesign.doc. Old document
saved as BaseClasses01.doc.
Removed transaction detail
from data modeler section to
transaction section.
Condensed the separate de-
tailed data modeler descrip-
tions into a generic descrip-
tion.

24 July 2004 Implementing AgentID and its subclasses
made it necessary the all string xxxx_id
fields be the same length, CHAR(10). cata-
log_id had previously been defined as CHAR
(9).

Changed field definitions for
catalog_id to CHAR(10).

09 August 2004 Changed intention of document from De-
sign plan (speculative) to Design / Imple-
mentation (actual).

Removed printouts of database
table contents.
Removed detail description of
data modeler class functionali-
ty, cited javadocs for these
classes.
Added GUI screen shots and
descriptions.

12 August 2004 Added screen shots from
Tue’s code.

